cyclic ordering - translation to russian
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

cyclic ordering - translation to russian

TERNARY RELATION THAT IS CYCLIC (IF [𝑥,𝑦,𝑧] THEN [𝑧,𝑥,𝑦]), ASYMMETRIC (IF [𝑥,𝑦,𝑧] THEN NOT [𝑧,𝑦,𝑥]), TRANSITIVE (IF [𝑤,𝑥,𝑦] AND [𝑤,𝑦,𝑧] THEN [𝑤,𝑥,𝑧]) AND CONNECTED (FOR DISTINCT 𝑥,𝑦,𝑧
Cyclic sequence; Circular order; Circular ordering; Total cyclic order; Cyclically ordered set; Cyclic ordering; Complete cyclic order; Linear cyclic order; L-cyclic order; Circularly ordered set
  • The months are a cyclic order.

cyclic order         

математика

циклический порядок

cyclic order         
ТМО циклический порядок (обслуживания)
cyclic ordering         

математика

цикличное упорядочение

Definition

cyclic redundancy check
<algorithm> (CRC or "cyclic redundancy code") A number derived from, and stored or transmitted with, a block of data in order to detect corruption. By recalculating the CRC and comparing it to the value originally transmitted, the receiver can detect some types of transmission errors. A CRC is more complicated than a checksum. It is calculated using division either using shifts and exclusive ORs or table lookup (modulo 256 or 65536). The CRC is "redundant" in that it adds no information. A single corrupted bit in the data will result in a one bit change in the calculated CRC but multiple corrupted bits may cancel each other out. CRCs treat blocks of input bits as coefficient-sets for polynomials. E.g., binary 10100000 implies the polynomial: 1*x^7 + 0*x^6 + 1*x^5 + 0*x^4 + 0*x^3 + 0*x^2 + 0*x^1 + 0*x^0. This is the "message polynomial". A second polynomial, with constant coefficients, is called the "generator polynomial". This is divided into the message polynomial, giving a quotient and remainder. The coefficients of the remainder form the bits of the final CRC. So, an order-33 generator polynomial is necessary to generate a 32-bit CRC. The exact bit-set used for the generator polynomial will naturally affect the CRC that is computed. Most CRC implementations seem to operate 8 bits at a time by building a table of 256 entries, representing all 256 possible 8-bit byte combinations, and determining the effect that each byte will have. CRCs are then computed using an input byte to select a 16- or 32-bit value from the table. This value is then used to update the CRC. Ethernet packets have a 32-bit CRC. Many disk formats include a CRC at some level. (1997-08-02)

Wikipedia

Cyclic order

In mathematics, a cyclic order is a way to arrange a set of objects in a circle.[nb] Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "a < b". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation [a, b, c], meaning "after a, one reaches b before c". For example, [June, October, February], but not [June, February, October], cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected. Dropping the "connected" requirement results in a partial cyclic order.

A set with a cyclic order is called a cyclically ordered set or simply a cycle.[nb] Some familiar cycles are discrete, having only a finite number of elements: there are seven days of the week, four cardinal directions, twelve notes in the chromatic scale, and three plays in rock-paper-scissors. In a finite cycle, each element has a "next element" and a "previous element". There are also cyclic orders with infinitely many elements, such as the oriented unit circle in the plane.

Cyclic orders are closely related to the more familiar linear orders, which arrange objects in a line. Any linear order can be bent into a circle, and any cyclic order can be cut at a point, resulting in a line. These operations, along with the related constructions of intervals and covering maps, mean that questions about cyclic orders can often be transformed into questions about linear orders. Cycles have more symmetries than linear orders, and they often naturally occur as residues of linear structures, as in the finite cyclic groups or the real projective line.

What is the Russian for cyclic order? Translation of &#39cyclic order&#39 to Russian